Question	Scheme	Marks	AOs			
1(a)	$y \leqslant 7$	B1	2.5			
		(1)				
(b)	$f(1.8) = 7 - 2 \times 1.8^{2} = 0.52 \Longrightarrow gf(1.8) = g(0.52) = \frac{3 \times 0.52}{5 \times 0.52 - 1} = \dots$	M1	1.1b			
	gf (1.8) = 0.975 oe e.g. $\frac{39}{40}$	A1	1.1b			
		(2)				
(c)	$y = \frac{3x}{5x-1} \Longrightarrow 5xy - y = 3x \Longrightarrow x(5y-3) = y$	M1	1.1b			
	$\left(\mathrm{g}^{-1}(x)=\right)\frac{x}{5x-3}$	A1	2.2a			
		(2)				
(5 marks)						
	Notes					
(a) B1: Correct range. Allow f (x) or f for y. Allow e.g. $\{y \in \mathbb{R} : y \leq 7\}, -\infty < y \leq 7, (-\infty, 7]$ (b) M1: Full method to find f (1.8) and substitutes the result into g to obtain a value. Also allow for an attempt to substitute $x = 1.8$ into an attempt at gf (x). E.g. gf $(x) = \frac{3(7-2x^2)}{5(7-2x^2)-1} = \frac{3(7-2(1.8)^2)}{5(7-2\times(1.8)^2)-1} = \dots$						
 A1: Correct value (c) M1: Correct attempt to cross multiply, followed by an attempt to factorise out <i>x</i> from an <i>xy</i> term and an <i>x</i> term. If they swap <i>x</i> and <i>y</i> at the start then it will be for an attempt to cross multiply followed by an attempt to factorise out <i>y</i> from an <i>xy</i> term and a <i>y</i> term. A1: Correct expression. Allow equivalent correct expressions e.g. -x/(3-5x), 1/5 + 3/(25x-15) Ignore any domain if given. 						

Question	Scheme	Marks	AOs		
2(a)	Attempts to solve $\frac{3}{2} = \frac{8x+5}{2x+3} \Rightarrow x =$ Or substitutes $x = \frac{3}{2}$ into $\frac{5-3x}{2x+3}$	M1	3.1a		
	$\frac{2}{\left(f^{-1}\left(\frac{3}{2}\right)=\right)-\frac{1}{10}}$	A1	1.1b		
		(2)			
(b)	$\left(\frac{8x+5}{2x+3}\right) 4 \pm \frac{\dots}{2x+3}$	M1	1.1b		
	$\left(\frac{8x+5}{2x+3}\right) 4 - \frac{7}{2x+3}$	A1	2.1		
		(2)			
(c)	$0 \leqslant g^{-1}(x) \leqslant 4$	B1	2.2a		
		(1)			
(d)	Attempts either boundary				
	$f(0) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$ or $f(4) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$	M1	3.1a		
	Attempts both boundaries				
	$f(0) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$ and $f(4) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$	dM1	1.1b		
	Range $\frac{5}{3} \leqslant \mathrm{fg}^{-1}(x) \leqslant \frac{37}{11}$	A1	2.1		
		(3)			
	Alternative by attempting $fg^{-1}(x)$				
	$g^{-1}(x) = \sqrt{16 - x} \Longrightarrow fg^{-1}(x) = \frac{8\sqrt{16 - x} + 5}{2\sqrt{16 - x} + 3}$	M1	3 1a		
	$fg^{-1}(0) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$ or $fg^{-1}(16) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$		5.1a		
	$fg^{-1}(0) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$ and $fg^{-1}(16) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$	dM1	1.1b		
	Range $\frac{5}{3} \leqslant \mathrm{fg}^{-1}(x) \leqslant \frac{37}{11}$	A1	2.1		
		(3)			
NIA	(8 mark				
inotes:					

(a)

- M1: Attempts to solve $\frac{3}{2} = \frac{8x+5}{2x+3} \Rightarrow x = ...$ You can condone poor algebra as long as they reach a value for x. Alternatively attempt to substitute $x = \frac{3}{2}$ into $f^{-1}(x) = \frac{\pm 5 \pm 3x}{\pm 2x \pm 8}$ or equivalent (may be in terms of y). Note that attempts to find e.g. f'(x) or $\frac{1}{f(x)}$ which may be implied by values such as $\frac{6}{17}, \frac{17}{6}, \frac{7}{18}, \frac{18}{7}$ score M0
- A1: Achieves $\left(f^{-1}\left(\frac{3}{2}\right)=\right)-\frac{1}{10}$. Do not be concerned what they call it, just look for the value e.g. $x = -\frac{1}{10}$ or just $-\frac{1}{10}$ is fine. Correct answer with no (or minimal) working scores both marks.

(b)

M1: Attempts to divide 8x + 5 by 2x + 3

Look for $4 \pm \frac{...}{2x+3}$ where ... is a constant or 8x+5 = A(2x+3) + B with *A* or *B* correct (which may be in a fraction) or in a long division attempt and obtains a quotient of 4 or attempts to express the numerator in terms of the denominator e.g. $\frac{8x+5}{2x+3} = \frac{4(2x+3)+...}{2x+3}$

A1: A full and complete method showing $\frac{8x+5}{2x+3} = 4 - \frac{7}{2x+3}$ or $\frac{8x+5}{2x+3} = 4 + \frac{-7}{2x+3}$ Also allow for correct values e.g. A = 4, B = -7

Do not isw here e.g. if they obtain A = 4, B = -7 and then write $-7 + \frac{4}{2x+3}$ score A0

- (c)
- **B1**: Deduces $0 \leq g^{-1}(x) \leq 4$ o.e.

E.g. $0 \le y \le 4$, $0 \le \text{range} \le 4$, $g^{-1}(x) \le 4$ and $g^{-1}(x) \ge 0$, $0 \le g^{-1} \le 4$, [0, 4] but not e.g. $0 \le x \le 4$, $0 \le g(x) \le 4$, (0, 4)

(d)

M1: Attempts either boundary. Look for either $f(0) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$ or $f(4) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$ or uses (b) e.g. $f(0) = 4 - \frac{7}{2 \times 0 + 3}$ or $f(4) = 4 - \frac{7}{2 \times 4 + 3}$ dM1: Attempts both boundaries. Look for $f(0) = \frac{8 \times 0 + 5}{2 \times 0 + 3}$ and $f(4) = \frac{8 \times 4 + 5}{2 \times 4 + 3}$

or uses (b) e.g. $f(0) = 4 - \frac{7}{2 \times 0 + 3}$ and $f(4) = 4 - \frac{7}{2 \times 4 + 3}$

A1: Correct answer written in the correct form.

E.g.
$$\frac{5}{3} \leq \text{fg}^{-1}(x) \leq \frac{37}{11}, \quad \frac{5}{3} \leq \text{range} \leq \frac{37}{11}, \quad \frac{5}{3} \leq y \leq \frac{37}{11}, \quad \text{fg}^{-1}(x) \leq \frac{37}{11} \text{ and } \quad \text{fg}^{-1}(x) \geq \frac{5}{3}$$

 $\frac{5}{3} \leq \text{fg}^{-1} \leq \frac{37}{11}, \quad \text{fg}^{-1}(x) \leq \frac{37}{11} \quad \text{o} \quad \text{fg}^{-1}(x) \geq \frac{5}{3}, \quad \left[\frac{5}{3}, \quad \frac{37}{11}\right] \text{ but not e.g. } \quad \frac{5}{3} \leq x \leq \frac{37}{11}$

PTO for an alternative to (d)

Composite and Inverse Functions - Year 2 Core

(d) Alternative:

M1: Attempts $fg^{-1}(x)$ and either boundary using x = 0 or x = 16

Look for either
$$fg^{-1}(0) = \frac{8 \times g^{-1}(0) + 5}{2 \times g^{-1}(0) + 3}$$
 or $fg^{-1}(16) = \frac{8 \times g^{-1}(16) + 5}{2 \times g^{-1}(16) + 3}$
Or uses (b) e.g. $fg^{-1}(0) = 4 - \frac{7}{2 \times g^{-1}(0) + 3}$ or $fg^{-1}(16) = 4 - \frac{7}{2 \times g^{-1}(16) + 3}$

The attempt at fg⁻¹(x) requires an attempt to substitute $\sqrt{16-x}$ (condone $\pm\sqrt{16-x}$) into f

dM1: Attempts both boundaries. Look for
$$fg^{-1}(0) = \frac{8 \times g^{-1}(0) + 5}{2 \times g^{-1}(0) + 3}$$
 and $fg^{-1}(16) = \frac{8 \times g^{-1}(16) + 5}{2 \times g^{-1}(16) + 3}$

Or uses (b) e.g.
$$fg^{-1}(0) = 4 - \frac{7}{2 \times g^{-1}(0) + 3}$$
 and $fg^{-1}(16) = 4 - \frac{7}{2 \times g^{-1}(16) + 3}$

The attempt at $fg^{-1}(x)$ requires an attempt to substitute $\sqrt{16-x}$ (condone $\pm\sqrt{16-x}$) into f **A1**: Correct answer written in the correct form with exact values.

E.g.
$$\frac{5}{3} \leq \text{fg}^{-1}(x) \leq \frac{37}{11}, \quad \frac{5}{3} \leq \text{range} \leq \frac{37}{11}, \quad \frac{5}{3} \leq y \leq \frac{37}{11}, \quad \text{fg}^{-1}(x) \leq \frac{37}{11} \text{ and } \quad \text{fg}^{-1}(x) \geq \frac{5}{3}$$

 $\frac{5}{3} \leq \text{fg}^{-1} \leq \frac{37}{11}, \quad \text{fg}^{-1}(x) \leq \frac{37}{11} \quad \text{o} \quad \text{fg}^{-1}(x) \geq \frac{5}{3}, \quad \left[\frac{5}{3}, \quad \frac{37}{11}\right] \text{ but not e.g. } \quad \frac{5}{3} \leq x \leq \frac{37}{11}$

Note that the $\frac{37}{11}$ is sometimes obtained fortuitously from incorrect working so check working carefully.

Questi	on Scheme	Marks	AOs		
3 (a)	f(x) > 33	B1	1.1b		
		(1)			
(b)	$y = 3 + \sqrt{x - 2} \Longrightarrow x = \dots$	M1	1.1b		
	$f^{-1}(x) = (x-3)^2 + 2$	A1	1.1b		
	x > 33	B1ft	2.2a		
		(3)			
(c)	$f(6) = 3 + \sqrt{6-2} = 5 \Longrightarrow g("5") = \frac{15}{"5"-3} = \dots$	M1	1.1b		
	$=\frac{15}{2}$	A1	1.1b		
		(2)			
(d)	$3 + \sqrt{a^2 + 2 - 2} = \frac{15}{a - 3} \Rightarrow "a^2 - 9 = 15"$	M1	1.1b		
	$a = 2\sqrt{6}$	A1	2.2a		
		(2)			
			(8 marks)		
	Notes				
 B1: I(x) > 530.e. e.g. y>3, range > 3, f(x) ∈ (3,∞), {f(x): f(x) > 3}, f > 3 but not e.g. x > 3, f(x)33 [3,∞) M1: Sets y = 3+√x-2 and attempts to make x the subject (or vice versa). Look for the correct order of operations so score for an expression of the form (x =) (y±3)²±2 or (y =) (x±3)²±2 A1: f⁻¹(x) = (x-3)² + 2 Also accept f⁻¹: x → (x-3)² + 2. Condone f⁻¹ = (x-3)² + 2 (or f⁻¹ = y = (x-3)² + 2) but do not allow just y = or f⁻¹: y = Also accept other equivalent expressions such as f⁻¹(x) = x² - 6x + 11 (simplified or unsimplified) B1ft: x > 33 or follow through on their part (a). The omission of x ∈ □ is condoned. Allow equivalent answers such as x ∈ ("3",∞) or {x:x > "3"} Note: It is also acceptable to define f⁻¹ in any variable e.g. as f⁻¹(t) = (t-3)² + 2 t > 33 as long as the variable is used consistently to score M1A1B1. If another variable is used other than x it must be fully defined e.g. f⁻¹(t) = not just f⁻¹ = 					
(c) M1: Substitutes $x = 6$ into f and substitutes the result into g to find a value for gf(6). Allow an attempt to substitute $x = 6$ into $gf(x) = \frac{15}{\sqrt{x-2}}$ condoning slips. They must proceed to find a value. Condone arithmetical slips and bracket errors/omissions. Condone for M1 attempts where when dealing with $\sqrt{x-2}$ leads to two different answers e.g. $\frac{15}{\sqrt{6-2}} \rightarrow \pm \frac{15}{2}$ A1: $\frac{15}{2}$ only oe isw once a correct answer is seen					

(d) Attempts to form the equation $3 + \sqrt{a^2 + 2 - 2} = \frac{15}{a - 3}$, and proceeds to a quadratic in *a* (usually M1: $a^2 = k$ or $a^2 - k = 15$ but condone arithmetical, miscopying and sign slips. Condone equations which would lead to complex roots. May be implied by a correct exact answer. Alternatively, they attempt to form the equation $a^2 + 2 = f^{-1}g(a) \Rightarrow a^2 + 2 = \left(\frac{15}{a-3} - 3\right)^2 + 2$ \Rightarrow (a+3)(a-3)=15 \Rightarrow a²-9=15 (condone slips) They should be square rooting both sides so that $\sqrt{a^2 + 2 - 2} \rightarrow a$, before multiplying both sides by a-3 and rearranging so that the a^2 term comes from their "(a+3)(a-3)" May be implied by a correct exact answer for their quadratic in a but a correct decimal answer does not imply this mark. $(a =) 2\sqrt{6}$ or accept $\sqrt{24}$ (they must reject the negative solution if found as $f(a^2 + 2) \neq g(a)$ when A1: $a = -2\sqrt{6}$) $\sqrt{6} \times \sqrt{4}$ is A0 isw $\sqrt{24}$ followed by $4\sqrt{6}$ (incorrect manipulation of the surd) but not followed by $\pm\sqrt{24}$ o.e. A decimal answer on its own or multiple answers e.g. $\pm \sqrt{24}$ score A0.